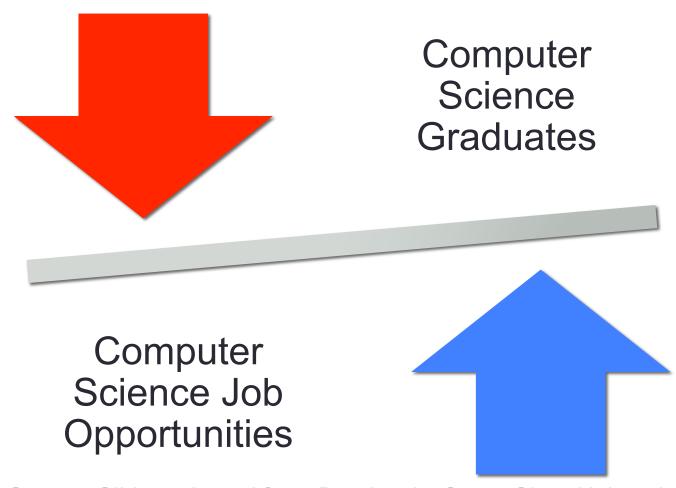
PRINCIPLED ASSESSMENT OF COMPUTATIONAL THINKING

Supporting Computer Science Teaching, Learning & Adoption Through Evidence-Centered Assessment

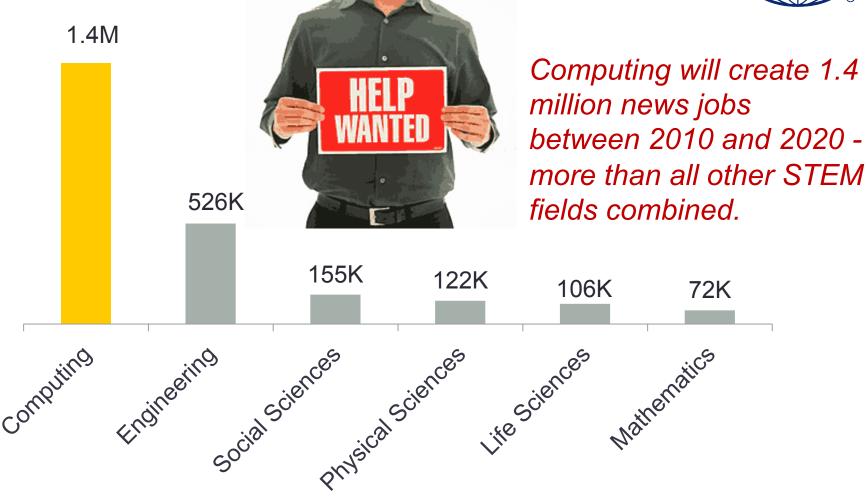
July 19th, 2013 University of California at Berkeley

Eric Snow
Center for Technology in Learning
SRI International


Overview

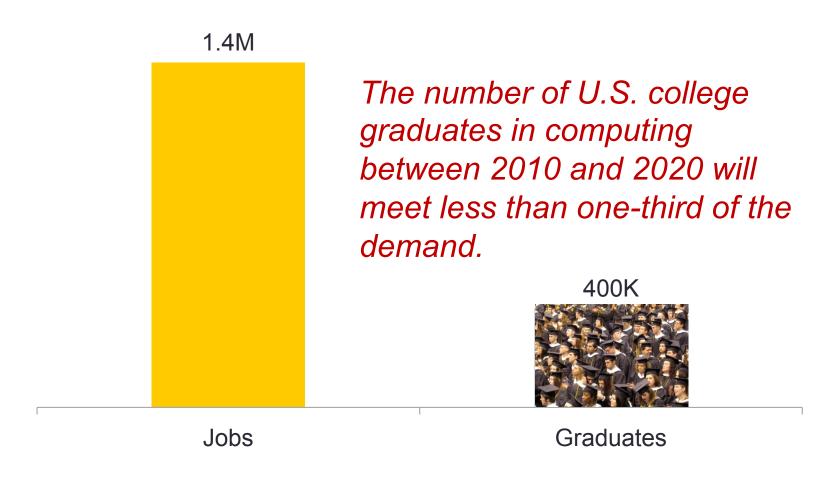
- Computer Science Education
 - United States & California
- Computational Thinking Practices
- Measuring Computational Thinking Practices
 - Principled Assessment of Computational Thinking (PACT)
 - Evidence-Centered Assessment Design (ECD)
 - Assessment Design Patterns

Computer Science Education

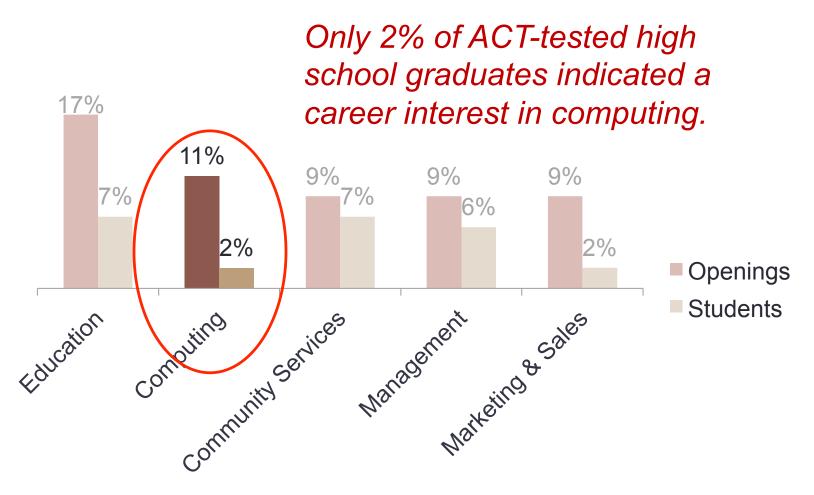


Source: Slides adapted from Dan Lewis, Santa Clara University

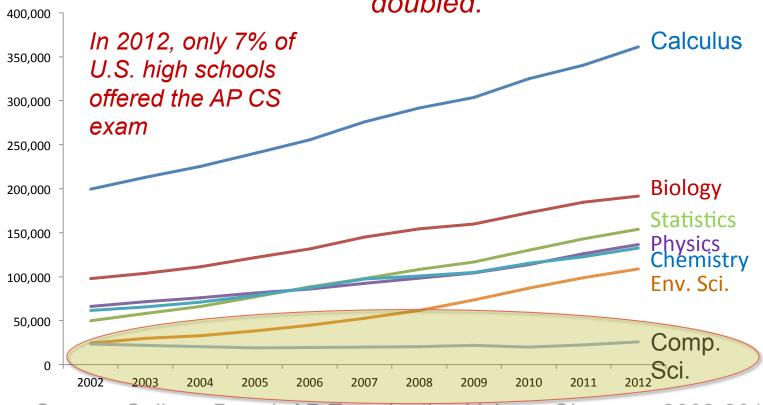
Employment Projections



Source: Bureau of Labor Statistics, Employment Projections 2010-2020

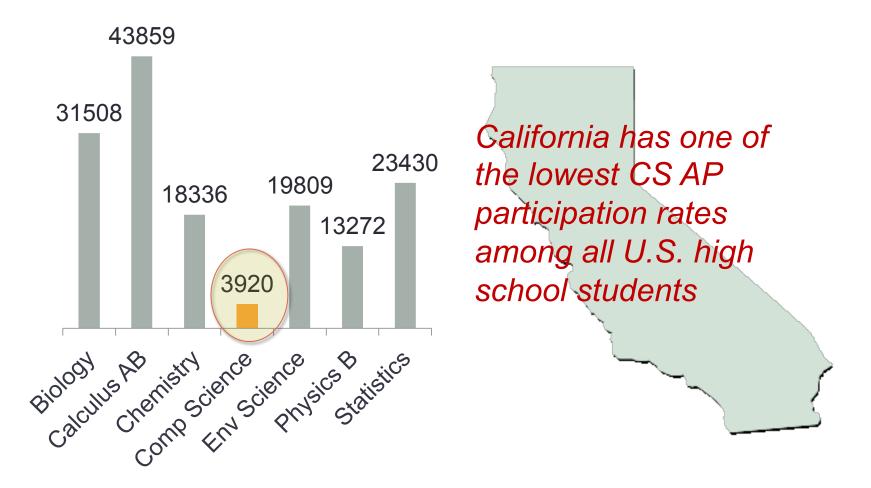

Jobs vs. Graduates

Source: NCWIT, By the Numbers


Fastest-Growing Careers vs. Student Career Interests

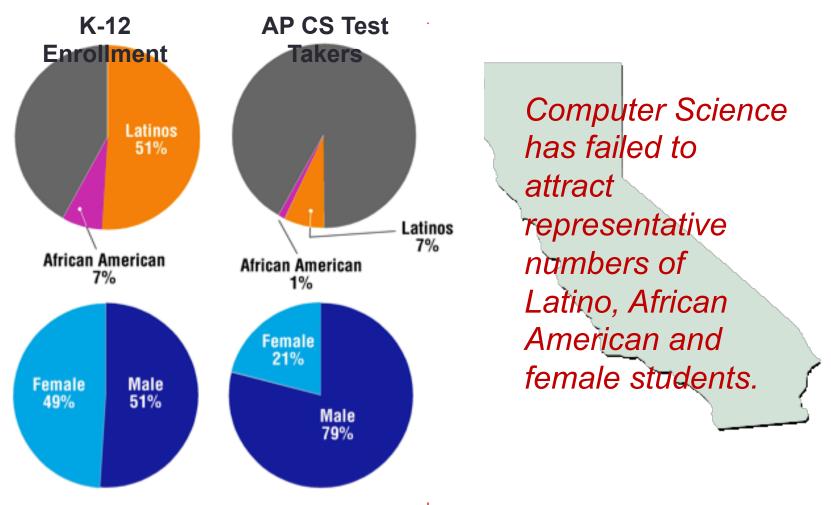
Source: ACT Research, The Condition of College & Career Readiness, 2012

AP Test Takers

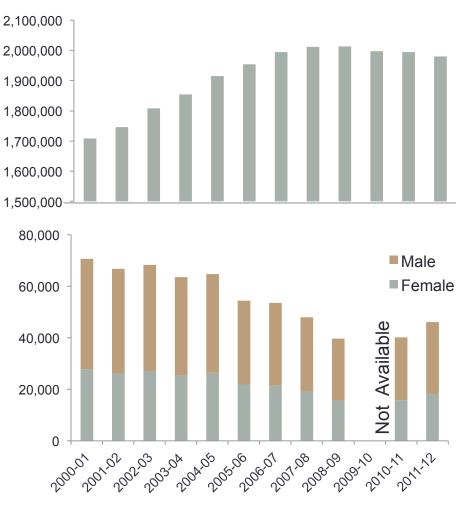

The number of AP CS test takers has remained relatively unchanged while the total of all STEM fields more than doubled.

Source: College Board, AP Examination Volume Changes, 2002-2012

California AP Test Takers

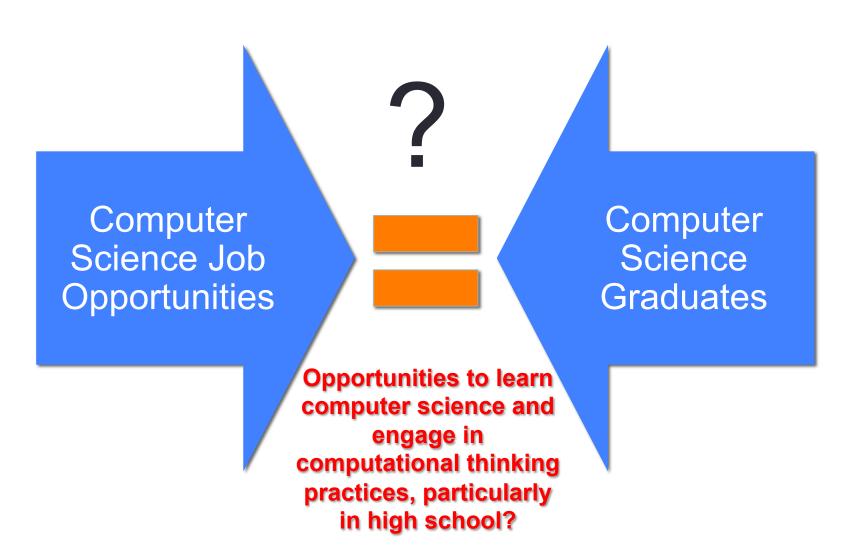


Source: College Board, AP Program Participation and Performance Data 2012


California AP Demographics

Source: www.exploringcs.org

California Enrollment


From 2000 to 2012, total California high school enrollment increased 12% from 1.7 to 1.9 million, ...

while enrollment in computer science and programming courses fell 35% from 71 to 46 thousand.

Source: Dataquest, California Department of Education

Computer Science Education

Key Curriculum Developments

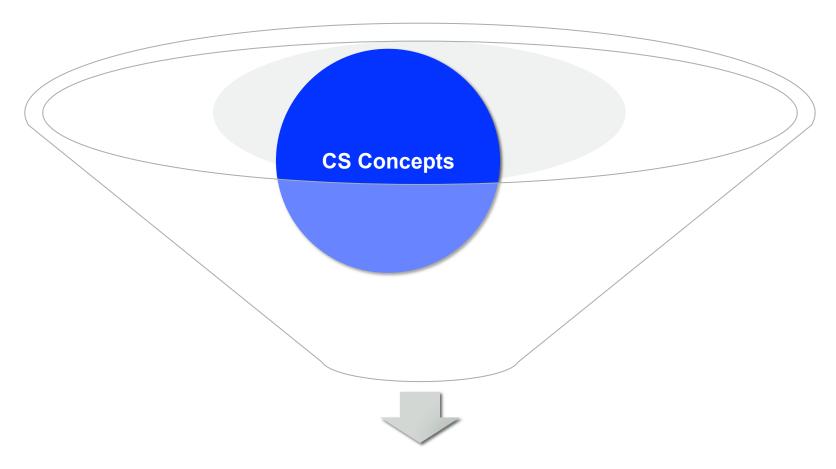
Exploring Computer Science (ECS)

An entry-level pre-AP introduction to the breadth of CS and on **computational thinking practices**. Prereq: Algebra I http://www.exploringcs.org/

Computer Science Principles (CSP)

A new AP course emphasizing **computational thinking practices** nested within seven big ideas in computing; fits between ECS and the existing CS AP course.

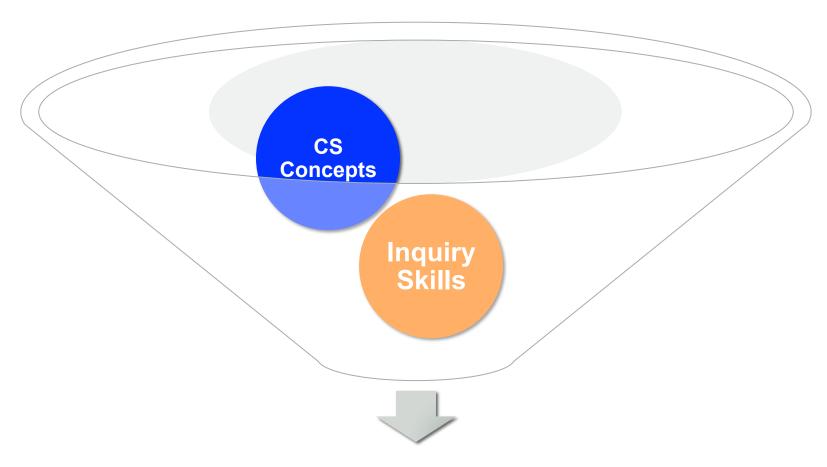
http://www.csprinciples.org/


Popularized by Jeanette Wing in her 2006 Association for Computing Machinery, *Viewpoints* article:

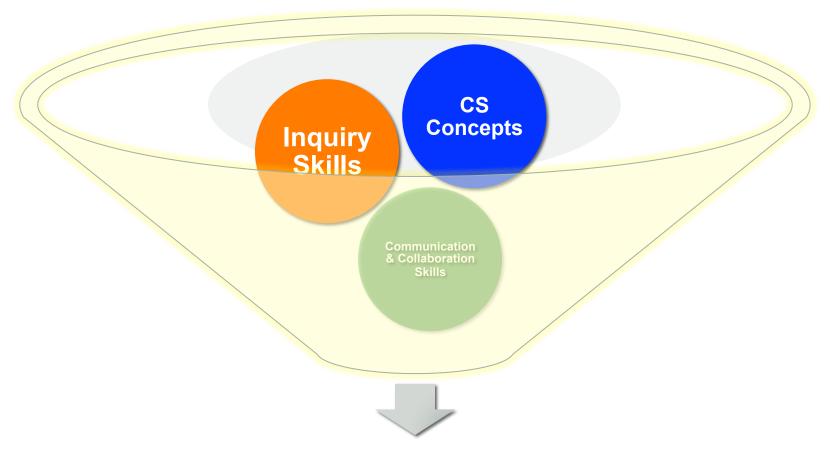
"Universally applicable attitude and skill set everyone, not just computer scientists, would be eager to learn and use."

Characteristics of computational thinking:

- Conceptualizing, not programming
- Ideas, not artifacts
- A way that humans, not computers, think
- Integrates computer science concepts, inquiry skills and, increasingly, communication and collaboration skills
- Complements and combines mathematical and engineering thinking



CS Concepts	Inquiry Skills	Communication & Collaboration Skills
Algorithms		
Programming	Explore	Present
Recursion		
Abstraction	Explain	Discuss
Debugging / Testing		
Variables	Modeling	Lead/Manage Teams



CS Concepts	Inquiry Skills	Communication & Collaboration Skills
Algorithms	Evaluate	
Programming	Explore	Present
Recursion	Analyze	
Abstraction	Explain	Discuss
Debugging / Testing	Elaborate	
Variables	Model	Lead/Manage Teams

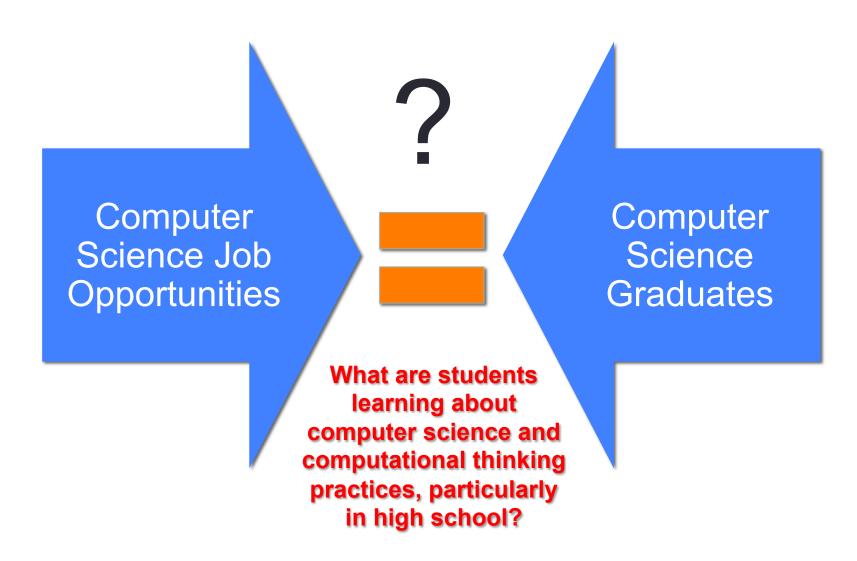
CS Concepts	Inquiry Skills	Communication & Collaboration Skills
Algorithms	Evaluate	Publish
Programming	Explore	Present
Recursion	Analyze	Build Consensus
Abstraction	Explain	Discuss
Debugging / Testing	Elaborate	Distribute Work
Variables	Model	Lead/Manage Teams

Exploring Computer Science	Computer Science Principles
Analyze the effects of developments in computing	Analyzing Problems and Artifacts
Design and implement creative solutions and artifacts	Developing Computational Artifacts
Analyze their computational work and the work of others	Analyzing Problems and Artifacts
Communicate computational thought processes, procedures and results to others	Communicating

Exploring Computer Science	Computer Science Principles
Analyze the effects of developments in computing	Analyzing Problems and Artifacts
Design and implement creative solutions and artifacts	Developing Computational Artifacts
Analyze their computational work and the work of others	Analyzing Problems and Artifacts
Communicate computational thought processes, procedures and results to others	Communicating

Exploring Computer Science	Computer Science Principles
Analyze the effects of developments in computing	Analyzing Problems and Artifacts
Design and implement creative solutions and artifacts	Developing Computational Artifacts
Apply abstractions and models	Abstracting
Analyze their computational work and the work of others	Analyzing Problems and Artifacts
Communicate computational thought processes, procedures and results to others	Communicating

Exploring Computer Science	Computer Science Principles
Analyze the effects of developments in computing	Analyzing Problems and Artifacts
Design and implement creative solutions and artifacts	Developing Computational Artifacts
Apply abstractions and models	Abstracting
Analyze their computational work and the work of others	Analyzing Problems and Artifacts
Communicate computational thought processes, procedures and results to others	Communicating


Exploring Computer Science	Computer Science Principles
Analyze the effects of developments in computing	Analyzing Problems and Artifacts
Design and implement creative solutions and artifacts	Developing Computational Artifacts
Apply abstractions and models	Abstracting
Analyze their computational work and the work of others	Analyzing Problems and Artifacts
Connect computation with other disciplines	Connecting Computing
Communicate computational thought processes, procedures and results to others	Communicating

Exploring Computer Science	Computer Science Principles
Analyze the effects of developments in computing	Analyzing Problems and Artifacts
Design and implement creative solutions and artifacts	Developing Computational Artifacts
Apply abstractions and models	Abstracting
Analyze their computational work and the work of others	Analyzing Problems and Artifacts
Connect computation with other disciplines	Connecting Computing
Communicate computational thought processes, procedures and results to others	Communicating

Exploring Computer Science	Computer Science Principles
Analyze the effects of developments in computing	Analyzing Problems and Artifacts
Design and implement creative solutions and artifacts	Developing Computational Artifacts
Apply abstractions and models	Abstracting
Analyze their computational work and the work of others	Analyzing Problems and Artifacts
Connect computation with other disciplines	Connecting Computing
Communicate computational thought processes, procedures and results to others	Communicating
Collaborate with peers on computing activities	Collaborating

Computer Science Education

Measuring Computational Thinking Practices

- Computational thinking remains underspecified, particularly as a measurement domain.
- There are few clearly articulated and comprehensive domain models for guiding the development of assessment tasks for measuring computational thinking outcomes, particularly in high school computer science.
- Efforts are currently underway to develop assessments for the Exploring Computer Science and Computer Science Principles curricula.

How can we improve computer science teaching, learning, and adoption through evidence-centered assessment?

NSF-CE21 Planning Grant (9/2011 – 3/2013)

NSF-CE21 Special Project (9/2012 – 8/2014)

http://pact.sri.com

Long Term Goals

- High quality assessments of computational thinking
- Help with the adoption of high school computer science courses through assessments that stakeholders recognize as useful for making decisions about student learning

Short Term Objectives

- Analyze the computational thinking domain, particularly how ECS CT practices and learning objectives are related to relevant national and state standards (e.g., CSTA, Common Core)
- Create design patterns for major computational thinking concepts that can be used to develop new assessments as curriculum evolves
- Create, for Exploring Computer Science, 4 unit assessments, a summative assessment, and field test them by April 2014

Summer - Fall 2012

 Analyze computational thinking domain, particularly as it is represented in Exploring Computer Science

Fall 2012 – Summer 2013

 Use Evidence-Centered Design to model the computational thinking domain in a set of assessment design templates for Exploring Computer Science

Summer - Fall 2013

 Use design templates to guide the development of unit and summative assessments for Exploring Computer Science

Fall 2013 - Spring 2014

Pilot Exploring Computer Science assessments

Evidence-Centered Assessment Design

Framework organized around three guiding questions:

- 1. What knowledge, skills, or other attributes (constructs) should be assessed?
- 2. What behaviors or performances should reveal those constructs?
- 3. What tasks or situations should elicit those behaviors?

ECD views assessments as providing evidence for supporting arguments about what a student knows and can do.

ECD is a particularly **useful framework for dealing with novel and/or hard-to-assess constructs**, like computational thinking practices.

ECD Design Patterns

Design Patterns are tools for organizing assessment arguments at a narrative level.

The often serve as a type of **advanced organizer** for multi-disciplinary teams prior to working on the details of specific assessment tasks.

Focal KSAs are the core of design patterns.

- Specify the Knowledge, Skills and Attributes one wants to measure.
- Often represent a blend of relevant standards and curriculum objectives.

Potential Observations specify the behaviors that count as evidence of the Focal KSAs.

Potential Work Products specify the types of tasks that can elicit the desired behaviors.

ECS Unit 1: Human-Computer Interaction

Topics

- Computers and the Internet
- Models of Intelligent Behavior
- Societal Impacts of Computing

Example Objectives

- Analyze the characteristics of hardware components to determine the applications for which they can be used
- Evaluate the results of web searches and the reliability of information found on the Internet
- Communicate legal and ethical concerns raised by computing innovation
- Explain the implications of communication as data exchange

Design Patterns ECS Unit 1: Human-Computer Interaction

Focal KSA	Potential Observations	Potential Work Products
Ability to compare the components of two or more computers for the suitability to a particular application.	Appropriateness of the comparison of the components of two or more computers for a particular application. Did the student correctly identify differences in the components of the computers that relate to the application? Did the student correctly explain how the differences in the components affect the suitability for the application?	Comparison of computers for the suitability to a particular application.

Design Patterns ECS Unit 1: Human-Computer Interaction

Additional Features

Characteristic:

- information about more than one computer
- information about the application

Variable:

- type of application
- level of details specified about the application and the computers
- knowledge of particular computer components required

ECS Unit 2: Problem Solving

Topics

- Algorithms and abstraction
- Connections between Mathematics and Computer Science
- Societal impacts of computing

Example Objectives

- Determine if a given algorithm successfully solves a stated problem
- Create algorithms that meet specified objectives
- Compare the tradeoffs between different algorithms for solving the same problem

Design Patterns ECS Unit 2: Problem Solving

Focal KSA	Potential Observations	Potential Work Products
Ability to explain the inputs of an algorithm, how it operates on that input, and what the outputs are.	Accuracy of the explanation of the parts of an algorithm. Did the student correctly identify the inputs of an algorithm? Did the student correctly and completely describe the operations performed on those inputs? Did the student correctly describe the operations performed on those inputs?	The explanation of the algorithm.

Design Patterns ECS Unit 2: Problem Solving

Additional Features

Characteristic:

an algorithm must be provided

Variable:

- algorithm provided
- inputs to the algorithm
- outputs of the algorithm
- · complexity of the algorithm

Design Patterns ECS Unit 3: Web Design

Topics

- Web page design and development
- Computers and the Internet
- Algorithms and abstraction
- Societal impacts of computing

Example Objectives

- Create web pages with a practical, personal, and/or societal purpose
- Select appropriate techniques when creating web pages
- Use abstraction to separate style from content in web page design and development

Design Patterns ECS Unit 4: Introduction to Programming

Topics

- Programming algorithms and abstractions
- Connections between mathematics and computer science
- Societal impacts of computing

Example Objectives

- Select appropriate programming structures
- Locate and correct errors in a program
- Explain how a particular program functions
- Justify the correctness of a program
- Create programs with practical, personal, and/or societal intent

Closing Comments

- There are not enough skilled graduates to fill the current and projected future demands for computer science jobs
- There is a need for computer science coursework with robust assessment programs earlier in students' high school education experiences
- Exploring Computer Science and Computer Science
 Principles are addressing this need

Closing Comments

- ECS and CSP target computational thinking practices, which include knowledge of CS concepts and inquiry, collaboration and communication skills
- Evidence-Centered Design (ECD) provides a robust framework for supporting the creation of assessments for this hard-to-measure domain
- ECD Design Patterns can serve as a type of advanced organizer for multi-disciplinary teams prior to working on the details of specific assessment tasks

Thank You!

Eric Snow
Center for Technology in Learning
SRI International

eric.snow@sri.com

